PCT／DE98／03819

Tumorvakzine fīx MUCI－positive Karzinome

Beschreibung

Die Erfindung betrifft neuartige Tumorvakzinen auf der Grundlage der Molekülstruktur des menschlichen epithelialen Muzins（MUCl）．Anwendungsgebiet der＿Erfindung ist die Immuntherapie von Karzinomen．

Epitheliale Muzine sind Glykoproteine mit repetitiven Aminosäuresequenzen und einem hohen Kohlenhydratanteil，die teils membrangebunden sind，teils sezerniert werden und auf vielen Drüsenepithelien vorkommen．Das am besten bekannte epitheliale Muzin ist das membrangebundene MUCl，auch als PEM， PUM，EMA，MAM－6，PAS－O oder Episialin beschrieben（Finn，o．，et FQl．，Immunol．Reviews 145：61，1995），dessen extrazellularer Teil急us einer variablen Anzahl sich wiederholender Einheiten aus 20解minosäuren besteht，den sogenannten＂Tandem－Repeats＂．Das MUCl． pst an sich kein tumorsperifisches Molekü；seine Eignung als Fumorantigen beruht darauf，daB sein Kohlenhydratanteil bei ：Tumoren qualitativ und quantitativ verändert ist（Burchell，J．，
景abei treten neue Epitope auf，die vom Immunsystem（humarale語㿽 zelluläre Abwehr）wahrgenommen werden． Nach operativer Entfernung des Primärtumors（bzw．nach ＝$=$ trahlen－oder Chemotherapie）muB in der Regel davon ausgegangen werden，daß noch Tumorzellen in Körper verbleiben （＂minimal residual disease＂）．Diese Tumorzellen，die eine potentielle Gefahr darstellen，werden durch verschiedene kórpereigene Mechanismen bekämpft，deren wirksamkeit durch eine adjuvante Immuntherapie verstärkt werden kann．Die effektivste adjuvante Immuntherapie ist die vakzinierung．Zwei Voraussetzungen sind hierfür erforderlich：erstens，daß ein geeignetes Zielantigen（Epitop）auf den Tumorzellen vorhanden ist，und zweitens，dab es gelingt，eine möglichst stark immunogene，vorzugsweise syntherische form einer vakzine herzustellen．

Nicht-glykosylierte Oligo-Repeat-Peptide des MUCI stellen ein geeignetes Zielantigen bei einer Reihe häufiger Karzinome dar (Apostolopoulos,V., und McKenzie,I.F.C., Crit.Rev.Immunol. 14:293, 1994). Die immundominante Region des MUCl ist das Motiv PDTRPAP, das auf jedem Tandem-Repeat vorhanden ist. Bisherige Versuche, eiñe vakzine auf der Basis eines einzelnen TandemRepeats zu entwickeln, waren jedoch nicht erfolgreich. Nach dem bisherigen stand des Wissens ist für das 2ustandekommen der immunogenen Konformation des Peptids eine Mindestlänge des Peptids erforderlich, die erst bei 3-5 Tandem-Repeats erreicht wird (Fontenot,J.D., et al., J.Biomol.Struct.Dyn. 13:245, 1995).

Der Erfindung liegt die Aufgabe zugrunde, auf der Basis der Molekulstruktur des menschlichen epithelialen Mucins mUCl eine Elumorvakzine zu entwickeln, die insbesondere zur Bekampfung von thach anderen Therapien im Körper noch verbliebenen Tumorzellen咅geeignet ist.
E
Bei der immologischen Untersuchung synthetischer Glykopeptide, die einem Tandem-Repeat des MUCl entsprechen, wurde überraschend gefunden, daB die Glykosylierung des fithreonins innerhalb der immundominanten Region pDTRPAP mit $\alpha-$ Galnac die Antigenitat signifikant erhönt. Bisher war davon Eausgegangen worden, daB diese Position bei nativem MUCl nicht Eglykosyliert ist. zu dieser Schlußfolgerung hatten die Annahme, daß eine Glykosylierung die Erkennung von Peptidepitopen in der Regel behindert, sowie Ergebnisse von in-vitroGlykosylierungsversuchen (Stadie, T., et al., Eur.J.Biochem. 229: 140(1995)) geführt. Neueste Untersuchungen (Müllef,s., et al., J.biol.Chem. 272:24780, 1997) zeigen allerdings, daB das Threonin im PDTRPAP-Motiv in vivo sehr wohl glykosyliert sein kann. Aus den genannten neuen Ergebnissen wird geschlossen, daB die Antigenitat (und im zusammenhang damit auch die Immunogenität) des MUCl-Tandem-Repeats durch Glykosylierung des Thr im PDTRPAP-Motiv mittels GalNAC oder einem kurzen oīigosaccharid erheblich erhoht wird. Dadurch wird die -immunogene-Konformation der imundominanten Region bereits von
einem einzelnen Tandem-Repeat erreicht. Die Antigenitat des glykosyiderten PDTRPAP-Motivs in einem Monorepeat ubertrifft sogar die des oligomeren, nicht glykosylierten peptids.
Auf der Basis dieser Entdeckung wird vorgeschlagen, Tumorvakzinen verschiedener Molekülgröben zu entwickeln, die am Thr des PDTRPAP-Motivs durch GalNAC oder ein geeignetes kurzkettiges oligosacharid glykosyliert sind. Die Aufgabe der Erfindung wird gemäß Anspruch 1 gelöst, die Unteransprüche sind Vorzugsvarianten.

Die Erfindung soll nachstehend durch ein Ausfünrungsbeispiel näher erläutert werden.

Beispiel 1

Antigenitat yon synthetischen MUCl-abgeleiteten Glykepeptiden

Im folgenden wird die Bindung von monoklonalen Antikörpern gegen das immundominante Motiv PDTRPAP des epithelialen Muzins (MUC1) an synthetische Glykopeptide dieses Muzins mit einer Länge von 20 bzw. 21 Aminosäuren in einem FestphasenImmunoassay (ELISA) untersucht. Die Glykopeptide mit den Bezeichnungen Al bis Al2 sirrct in Tabelle 1 aufgefünrt. sie entsprechen einem überlappenden Tandem-Repeat des MuCl und enthalten 5 potentielle Glykosylierungsstellen ($3 x$ Thr, 2x Ser): Al-A9 enthaiten ein zusätzliches Ala. Die Glykopeptide unterscheiden sich in der zahl und position der Glykosylierungsstellen (siehe Tabelle 1). Al-A9 tragen als Glykane das Thomsen-Friedenreich-Antigen (TF) B-D-Gal(1-3)a-D-GalNAC-O-R, während All und Al2 lediglich a-D-GalNAC-O-R (das Tn-Antigen) tragen. Die benutzten Antikörper sind: A>6-A/C7 (Maus, IgGl, Epitop: APDTRPAP) und MFOG (Maus, IgGl, Epitop DTRPAP) (siene: RYe,P.D., Price,M.R., eds., ISOBM TD-4 International Workshop on Monoclonal Antibodies against MUCl, Tumor Biol. 19, Suppl.1. 1998).

Tabelle 1: Synthetische Glykopeptide; das Peptid entspricht der Grundstruktur des epithelialen Muzins (MUCl): Die immundominante Region ist unterstrichen.

Die Ergebnisse zeigen, daB die in Position lo glykosylierten Peptide mit den beiden im Beispiel gezeigten Antikörpern signjfikant stärker binden als Peptide, die an dieser stelle nicht glykosyliert sind. Glykosylierungen an anderen Positionen sind ohne Einfluß. Substitution durch Tn oder TF ist gleichwertig. Das in diesem Beispiel demonstrierte Bindungsverhalten wird von anderen MUCl-Antikörpern geteilt; es gibt aber auch Ausnahmen. Die deutlich erhöhte Antigenität der in position 10 glykosylierten peptide labt sich auch in Inhibitionsversuchen zeigen. Die Ergebnisse zeigen, dab eine Glykosylierung der immundominanten Region des MUCl-Peptids mittels Tn oder $T F$ die Antigenitat signifikant erhöht.

1．Tumorvakzine，qnthaltend vom menschlichen epithelialen Muzin MUC1 abgeleitete synthetische Peptide unterschiedlicher Länge，die am Threonin der enthaltenen immundominanten Regionen PDTRPAP glykosyliert sind．

2．Tumorvakzine nach Anspruch 1，dadurch gekennzeichnet，daB die synthetischen Peptide efine Länge von >20 ，vorzugsweise von 40－120 Aminosäuren，haben．

3．Tumorvakzine nach Anspruch 1 und 2 ，dadurch gekennzeichnet， dab die Glykosylierung durch Monosaccharide erfolgt．
＝A．Tumorvakzine nach Anspruch 1 bis 3，dadurch gekennzeichnet，黄daB die Glykosylierung durco α N－Acetylgalactosamin新（GalNAC）erfolgt．

5．Tumorvakzine nach Anspruch 1 bis 4 ，dadurch gekennzeichnet， die Glykosylierung durch kqrakettige oligosaccharide erfolgt．
鹿
，位6 Tumorvakzine nach Anspruch 1 bis 3 und 5，dadurch首gekennzeichnet，daB die Glykosylierung durch das Disaccharid GalB－1，3－GalNAC α erfolgt

7．Verwendung der Tumorvakzine nach Anspruch 1 bis 6 zur Bekämpfung von Tưorzellen aus Mamma－．colorectalen oder Pankreas－karzinomen im sinne einer aktiven spezifischen Immunisierung．

π

